Đề thi THPT Quốc gia môn Toán năm 2015, De thi thu THPT Quoc Gia nam 2015

You are here: Home »

Like VNMATH on FACEBOOK để ủng hộ VNMATH.

Đề thi chọn đội tuyển VN thi Olympic Toán quốc tế 2015 (Vietnam TST 2015)

VNMATH.COM 26 tháng 3, 2015 , 0

Đề thi chọn đội tuyển Toán quốc gia Việt Nam dự thi Olympic Toán quốc tế năm 2015 (IMO 2015) tại Thái Lan.

Ngày thi thứ nhất

Bài 1.
Gọi $\alpha $ là nghiệm dương của phương trình ${{x}^{2}}+x=5$. Với số nguyên dương $n$ nào đó, gọi ${{c}_{0}},{{c}_{1}},{{c}_{2}}, \ldots ,{{c}_{n}}$ là các số nguyên không âm thỏa mãn đẳng thức $${{c}_{0}}+{{c}_{1}}\alpha +{{c}_{2}}{{\alpha }^{2}}+...+{{c}_{n}}{{\alpha }^{n}}=2015.$$
a) Chứng minh rằng ${{c}_{0}}+{{c}_{1}}+{{c}_{2}}+...+{{c}_{n}}\equiv 2\text{ }(\bmod 3).$
b) Tìm giá trị nhỏ nhất của tổng ${{c}_{0}}+{{c}_{1}}+{{c}_{2}}+...+{{c}_{n}}$.

Bài 2.
Cho đường tròn (O), dây cung $BC$ cố định và điểm $A$ chạy trên $(O)$. Gọi $I,H$ lần lượt là trung điểm cạnh $BC$ và trực tâm tam giác $ABC$, tia $IH$ cắt $(O)$ tại $K$, $AH$ cắt $BC$ tại $D$, $KD$ cắt $(O)$ tại $M$. Từ M vẽ đường vuông góc với $BC$ cắt $AI$ tại $N$.
a) Chứng minh rằng điểm $N$ thuộc một đường tròn cố định.
b) Đường tròn tiếp xúc với $AK$ tại $A$ và đi qua $N$ cắt $AB,AC$ tại $P,Q$. J là trung điểm $P,Q$. Chứng minh rằng $AJ$ đi qua một điểm cố định.

Bài 3.
Một số nguyên dương $k$ có tính chất “$t-m$” nếu với mọi số nguyên dương $a$, tồn tại số nguyên dương $n$ sao cho
$${{1}^{k}}+{{2}^{k}}+{{3}^{k}}+...+{{n}^{k}} \equiv a (\bmod m).$$
a) Tìm tất cả các số nguyên dương $k$ có tính chất $t-20$.
b) Tìm số nguyên dương $k$ nhỏ nhất có tính chất $t-{{20}^{15}}$.

Ngày thi thứ hai

Bài 4.
Trong một kỳ thi vấn đáp, có $100$ thí sinh và $25$ vị giám khảo, mỗi thí sinh thích ít nhất $10$ giám khảo.

a) Chứng minh rằng có thể chọn ra $7$ giám khảo mà mỗi thí sinh đều thích ít nhất $1$ trong $7$ người đó.
b) Chứng minh rằng có thể sắp xếp lịch thi sao cho mỗi thí sinh được đúng $1$ giám khảo mình thích hỏi và mỗi giám khảo hỏi không quá $10$ thí sinh.

Bài 5.
Cho tam giác$ABC$ nhọn và có điểm $P$ nằm trong tam giác sao cho $\angle APB=\angle APC = \alpha$ và $\alpha>180{}^\circ - \angle BAC $. Đường tròn ngoại tiếp tam giác $APB$ cắt $AC$ ở $E,$ đường tròn ngoại tiếp tam giác $APC$ cắt $AB$ ở $F$ . Gọi $Q$ là điểm nằm trong tam giác $AEF$ sao cho $\angle AQE=\angle AQF$. Gọi $D$ là điểm đối xứng với $Q$ qua $EF$ , phân giác góc $EDF$ cắt $AP$ tại $T.$

a) Chứng minh rằng $\angle DET=\angle ABC,\angle DFT=\angle ACB$ .
b) Đường thẳng $PA$ cắt các đường thẳng $DE,DF$ lần lượt tại $M,N$ . Gọi $I,J$ lần lượt là tâm đường tròn nội tiếp các tam giác $PEM,PFN$ và $K$ là tâm đường tròn ngoại tiếp tam giác $DIJ$ . Đường thẳng $DT$ cắt $(K)$ tại $H$. Chứng minh rằng $HK$ đi qua tâm đường tròn nội tiếp của tam giác $DMN.$

Bài 6.
Tìm số nguyên dương $n$ nhỏ nhất sao cho tồn tại $n$ số thực thỏa mãn đồng thời các điều kiện:

i) Tổng của $n$ số đó dương.
ii) Tổng lập phương của $n$ số đó âm.
iii) Tổng lũy thừa bậc $5$ của $n$ số đó dương.



Về VNMATH.COM

VNMATH hoạt động từ năm 2008 với slogan Trao đổi để học hỏi, Sẻ chia để vươn lên. Hiện nay VNMATH.COM là trang web Toán học có lượt truy cập lớn nhất Việt Nam.

Chia sẻ bài viết này


Bài viết liên quan

Không có nhận xét nào :

Để lại Nhận xét