Đề thi THPT Quốc gia môn Toán năm 2015, De thi thu THPT Quoc Gia nam 2015

You are here: Home »

Like VNMATH on FACEBOOK để ủng hộ VNMATH.

Đề Thi Olympic Toán sinh viên của Đại học Sư phạm Hà Nội năm 2014

VNMATH.COM 3 tháng 3, 2014 , 0

Đề Thi Olympic Toán sinh viên của Đại học Sư phạm Hà Nội năm 2014

Môn: Đại số

Câu 1. Cho đa thức $f(x)=(p_1-x)(p_2-x)\ldots (p_n-x)$, trong đó $p_i\text{ } (1\leq i\leq n)$ là các hằng số, và cho $$\Delta _n=\begin{vmatrix} p_1 & a & a & a & \cdots & a & a \\ b & p_2 & a & a & \cdots & a &a \\ b & b & p_3 & a & \cdots & a & a\\ b & b & b & p_4 & \cdots & a & a\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ b & b & b & b & \cdots & p_{n-1} & a\\ b & b & b & b & \cdots & b & p_n \end{vmatrix}$$

(a) Chứng minh rằng nếu $a\neq b$ thì $\Delta_n=\dfrac{bf(a)-af(b)}{b-a}$.
(b) Chứng minh rằng nếu $a=b$ thì $\Delta _n=a\sum_{i=1}^{n}f_i(a)+p_nf_n(a)$, trong đó $f_i(a)=\prod_{j=1,j\neq i}^{n}(p_j-a)$ với mọi $1\leq i\leq n$.

Câu 2. Cho $A,B,C,D\in Mat(n\times n,\mathbb{C})$. Chứng minh rằng nếu ma trận $\begin{pmatrix} A & B\\ C & D \end{pmatrix}$ có hạng bằng $n$ thì $$\begin{vmatrix} \left |A \right | & \left |B \right |\\ \left |C \right | & \left |D \right | \end{vmatrix}=0$$ Hơn nữa, nếu $A$ khả nghịch thì $D=CA^{-1}B$

Câu 3. Cho $A\in Mat(n\times n,\mathbb{R})$ có hạng $r$, $r\geq 1$. Chứng minh rằng $A^2=A$ khi và chỉ khi tồn tại các ma trận $B\in Mat(n\times r,\mathbb{R})$ và $C\in Mat(r\times n,\mathbb{R})$ đều có hạng bằng $r$ thoả mãn $A=BC$ và $CB=I_r$. Hơn nữa, chứng minh rằng nếu $A^2=A$ thì $$\left | 2I_n-A \right |=2^{n-r} \text{ và } \left | A+I_n \right |=2^r$$

Câu 4. Một ma trận hoán vị cấp $k$ là ma trận vuông cấp $k$ mà mỗi dòng, mỗi cột có đúng một phần tử bằng $1$, các phần tử còn lại bằng $0$. Cho A là một ma trận vuông cấp $k$ $(k\geq 1)$ khả nghịch mà các phần tử của nó là các số nguyên không âm.

(a) Chứng minh rằng tồn tại ma trận hoán vị $P$ cấp $k$ và ma trận vuông $B$ cấp $k$ với các phần tử là các số nguyên không âm sao cho $A=P+B$.
(b) Chứng minh rằng nếu tổng tất cả các phần tử của ma trận $A^n$ là bị chặn trên bởi một hằng số với mọi $n$ thì $A$ phải là ma trận hoán vị.

Câu 5. Cho $n$ là số nguyên dương và gọi $$f(x)=x^n+(k+1)x^{n-1}+(2k+1)x^{n-2}+\cdots+((n-1)k+1)x+nk+1$$

(a) Chứng minh rằng $f(1-k)=n+1$
(b) Chứng minh rằng nếu $n\geq 3$ và $k=2$ thì phương trình $f(x)=0$ không có nghiệm nguyên.


Môn: Giải tích


Câu 1. Giả sử $a$ là số thực dương. Định nghĩa dãy $\left \{ x_n \right \}_{n=0}^{\infty }$ bởi qui nạp $$x_0=0,\text{ } x_{n+1}=a+x_n^2 \text{ với mọi } n\geq0$$
Tìm một điều kiện cần và đủ của $a$ để dãy $\left \{ x_n \right \}_{n=0}^{\infty }$ hội tụ.

Câu 2. Cố định một số nguyên $n\geq 1$.

(a) Chứng minh phương trình $$x^n+x^{n-1}+\cdots +x-1=0$$ có duy nhất một nghiệm dương $a_n$.
(b) Chứng minh rằng $$a_n^{n+1}-2a_n+1=0$$ và từ đó tìm $\underset{n\rightarrow \infty }{\lim }a_n$.

Câu 3. Cho $f\colon \mathbb{R}\rightarrow \mathbb{R}$ là hàm khả vi liên tục cấp 3. Giả sử rằng cả $f(x)$, $f^{'''}(x)$ đều bị chặn và đặt $$M_0=\underset{x\in\mathbb{R}}{\sup}\left | f(x) \right |, M_3=\underset{x\in\mathbb{R}}{\sup}\left | f^{'''}(x) \right |$$

(a) Chứng minh rằng $f^{'}(x)$ bị chặn và $$\underset{x\in\mathbb{R}}{\sup}\left | f^{'}(x) \right |\leq \frac{1}{2}(9M_0^2M_3)^{\frac{1}{3}}$$
(b) Đạo hàm cấp hai $f^{''}(x)$ có bị chặn không?

Câu 4. Giả sử $f\colon \left [ 0,1 \right ] \rightarrow \mathbb{R}$ là hàm khả tích trên đoạn $\left [ 0,1 \right ]$ sao cho $$\int_{0}^{1}f(x)dx=\int_{0}^{1}xf(x)dx=1$$
Chứng minh rằng $$\int_{0}^{1}f^2(x)dx\geq 4$$

Câu 5. Chứng minh rằng không tồn tại hàm số liên tục $f\colon \left [ 0,1 \right ] \rightarrow \mathbb{R}$ thoả mãn $$f(x)+f(x^2)=x \text{ với mọi }x\in \left [ 0,1 \right ].$$

Về VNMATH.COM

VNMATH hoạt động từ năm 2008 với slogan Trao đổi để học hỏi, Sẻ chia để vươn lên. Hiện nay VNMATH.COM là trang web Toán học có lượt truy cập lớn nhất Việt Nam.

Chia sẻ bài viết này


Bài viết liên quan

Không có nhận xét nào :

Để lại Nhận xét