Đề thi THPT Quốc gia môn Toán năm 2015, De thi thu THPT Quoc Gia nam 2015

You are here: Home »

Like VNMATH on FACEBOOK để ủng hộ VNMATH.

Đề thi Olympic Toán sinh viên 2014 của Đại học Khoa học Tự nhiên Tp.HCM

VNMATH.COM 3 tháng 3, 2014 , 0

Đề thi Olympic Toán sinh viên 2014 của Đại học Khoa học Tự nhiên Tp.HCM


Môn Giải tích
Bài 1. Chứng minh rằng không tồn tại hàm liên tục $f:\mathbb{R}\rightarrow \mathbb{R}$ sao cho $f:\mathbb{R}= \mathbb{Q}$ với $\mathbb{Q}$ là tập hợp các số hữu tỉ.

Bài 2. Cho hàm số thực $f:\mathbb{R}\rightarrow \mathbb{R}^{+}$ thỏa mãn các tính chất sau:
a. $f(xf(y))=yf(x),\forall x,y \in \mathbb{R}^{+}$
b. $f(x)\rightarrow 0$ khi $x\rightarrow \infty$

Bài 3.  Giả sử $(a_{n})$ và $(b_{n})$ là dãy các số thực thỏa mãn $a_{n}\leq b_{n},\forall n$. Chứng minh rằng nếu $\sum a_{n}$ không hội tụ và không bằng $-\infty$ thì $\sum b_{n}$ không hội tụ.

Bài 4.  Chứng minh rằng nếu $\sum_{n=1}^{\infty} a_{n}$ hội tụ tuyệt đối thì $\sum_{n=1}^{\infty} a_{n}^{2}$ hội tụ.

Bài 5. Một hàm $f:D\rightarrow \mathbb{R}$ được gọi là Lipschitz nếu tồn tại một hằng số $K>0$ sao cho $|f(x)-f(y)|\leq K|x-y|,\forall x, y \in D.$ Chứng minh rằng tồn tại một hàm số liên tục đều mà không Lípchitz.

Bài 6. Chứng minh bất đẳng thức sau đây:
$$1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}>\frac{1+\log_{2}n}{2},\forall n \geq 1$$
Từ đó suy ra 
$$\sum_{n=1}^{\infty}\frac{1}{n}=+\infty$$

Môn: Đại số
Câu 1. Giải hệ phương trình:
$$\left\{\begin{matrix} x_{1}+x_{2}+x_{3}=0\\ x_{2}+x_{3}+x_{4}=0\\ ...................\\ x_{98}+x_{99}+x_{100}=0\\ x_{99}+x_{100}+x_{1}=0\\ x_{100}+x_{1}+x_{2}=0 \end{matrix}\right.$$

Câu 2. Cho hệ phương trình:
$$\left\{\begin{matrix} *x+*y+*z=0\\ *x+*y+*z=0\\ *x+*y+*z=0 \end{matrix}\right.$$
Hai người lần lượt điền các hệ số vào chỗ đánh dấu $*$. Chứng minh rằng người đi đầu bao giờ cũng có thể làm cho hệ phương trình chỉ có nghiệm duy nhất. Người thứ hai có luôn đạt điều đó không? Đối với một hệ phương trình tuyến tính $n$ ẩn, $n$ phương trình thì sao?

Câu 3. Tính định thức:
$$I_{n}=\begin{vmatrix} 5 & 3 & 0 & 0 & ... & 0 & 0\\ 2 & 5 & 3 & 0 & ... & 0 & 0\\ 0 & 2 & 5 & 3 & ... & 0 & 0\\ ... & ... & ... & ... & ... & ... & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{vmatrix}$$

Câu 4. Cho $A$ và $B$ là hai ma trận vuông cấp $n$ thỏa $\det(A\pm B)\neq 0$. Đặt:
$$M=\begin{pmatrix} A & B\\ B & A \end{pmatrix}$$
Chứng minh rằng $\det (M)\neq 0$

Câu 5. Cho $A,B \in M_{n}®$ sao cho tồn tại các số thực $\alpha ,\beta \neq 0$ thỏa mãn: $AB+\alpha A+ \beta B=0$. Chứng minh rằng $AB=BA$.

Câu 6. Chứng minh rằng nếu $A,B$ là các ma trận vuông cùng cấp thì $AB$ và $BA$ có cùng đa thức đặc trưng.

Về VNMATH.COM

VNMATH hoạt động từ năm 2008 với slogan Trao đổi để học hỏi, Sẻ chia để vươn lên. Hiện nay VNMATH.COM là trang web Toán học có lượt truy cập lớn nhất Việt Nam.

Chia sẻ bài viết này


Bài viết liên quan

Không có nhận xét nào :

Để lại Nhận xét