Đề thi THPT Quốc gia môn Toán năm 2015, De thi thu THPT Quoc Gia nam 2015

You are here: Home »

Like VNMATH on FACEBOOK để ủng hộ VNMATH.

Đề thi chọn đội tuyển Việt Nam tham gia IMO năm 2014

VNMATH.COM 26 tháng 3, 2014 0

Kì thi Olympic Toán quốc tế lần thứ 55 sẽ diễn ra từ ngày 03 đến 13/07/2014 tại thành phố cảng Cape Town, Nam Phi. Kỳ thi chọn đội tuyển Việt Nam tham gia IMO 2014 đã diễn ra vào ngày 25-26/03 để chọn ra 6 thí sinh cho đội tuyển chính thức.

Năm nay có 48 học sinh tham gia kì thi Viet Nam TST 2014 trong đó 46 em đạt từ 24.75 điểm trở lên trong kỳ thi học sinh giỏi quốc gia năm 2014 cùng 2 học sinh đã vào đội dự tuyển năm trước
VNMATH giới thiệu Đề thi chọn đội tuyển Việt Nam năm 2014.

Vietnam Team Selection Test 2014. Download file PDF.

Ngày thi thứ nhất (25/03/2014)

Bài 1.
Tìm tất cả các hàm số $f:\mathbb{Z}\to \mathbb{Z}$ thỏa mãn điều kiện $$f\left( 2m+f(m)+f(m)f(n) \right)=nf(m)+m$$ với mọi $m,n$ là các số nguyên.

Bài 2.
Trong mặt phẳng tọa độ $Oxy$, xét các điểm nguyên có tọa độ thuộc $$T=\left\{ (x;y):\left| x \right|,\left| y \right|\le 20,(x;y)\ne (0;0) \right\}.$$ Tô màu các điểm thuộc $T$ sao cho với mọi điểm có tọa độ $(x,y)\in T$ thì có đúng một trong hai điểm $(x;y)$ và $(-x;-y)$ được tô màu. Với mỗi cách tô như thế, gọi $N$ là số các bộ $({{x}_{1}};{{y}_{1}}),({{x}_{2}};{{y}_{2}})$ mà cả hai điểm này cùng được tô màu và ${{x}_{1}}\equiv 2{{x}_{2}},{{y}_{1}}\equiv 2{{y}_{2}}(\bmod 41)$. Tìm tất cả các giá trị có thể có của $N.$

Bài 3.
Cho tam giác $ABC$ có $A<B<C$ và nội tiếp trong đường tròn $(O).$ Trên cung nhỏ $BC$ của $(O)$ và không chứa điểm $A$, lấy điểm $D$ tùy ý. Giả sử $CD$ cắt $AB$ ở $E$ và $BD$ cắt $AC$ ở $F$. Gọi ${{O}_{1}}$ là tâm đường tròn nằm trong tam giác $EBD$, tiếp xúc với $EB,ED$ và tiếp xúc với đường tròn $(O).$ Gọi ${{O}_{2}}$ là tâm đường tròn nằm trong tam giác $FCD$, tiếp xúc với $FC,FD$ và tiếp xúc với đường tròn $(O).$
a. Gọi $M$ là tiếp điểm của $({{O}_{1}})$ với $BE$ và $N$ là tiếp điểm của ${{O}_{2}}$ với $CF$. Chứng minh rằng đường tròn đường kính $MN$ luôn đi qua một điểm cố định.
b. Đường thẳng qua $M$ và song song với $CE$ cắt $AC$ ở $P$, đường thẳng qua $N$ và song song với $BF$cắt $AB$ ở $Q$. Chứng minh rằng đường tròn ngoại tiếp tam giác $(AMP),(ANQ)$ cùng tiếp xúc với một đường tròn cố định.

Ngày thi thứ hai (26/03/2014)

Bài 4.
a. Cho tam giác $ABC$ có đường cao $AD$ và $P$ là một điểm di động trên $AD$. Các đường thẳng $PB$ và $AC$ cắt nhau ở $E$, các đường thẳng $PC$ và $AB$ cắt nhau ở $F.$ Giả sử tứ giác $AEDF$ nội tiếp. Chứng minh rằng $$\frac{PA}{PD}=(\tan B+\tan C)\cot \frac{A}{2}.$$ b. Cho tam giác $ABC$ có trực tâm $H$ và $P$ là một điểm di động trên $AH$. Đường thẳng vuông góc với $AC$ tại $C$ cắt $BP$ tại $M$, đường thẳng vuông góc với $AB$ tại $B$ cắt $CP$ tại $N.$ Gọi $K$ là hình chiếu của $A$ trên $MN$. Chứng minh $\angle BKC+\angle MAN$ không đổi.

Bài 5.
Tìm tất cả đa thức $P(x),Q(x)$ có hệ số nguyên và thỏa mãn điều kiện:
Với dãy số $({{x}_{n}})$ xác định bởi: ${{x}_{0}}=2014,{{x}_{2n+1}}=P({{x}_{2n}}),{{x}_{2 n}}=Q({{x}_{2n-1}})$ với $n\ge 1$ thì mỗi số nguyên dương $m$ là ước của một số hạng khác 0 nào đó của dãy $({{x}_{n}})$.

Bài 6.
Cho $m,n,p$ là các số tự nhiên không đồng thời bằng 0. Không gian tọa độ được chia thành các mặt phẳng song song cách đều nhau. Một cách điền vào mỗi khối lập phương đơn vị một trong các số từ 1 đến 60 được gọi là cách điền Điện Biên nếu thỏa mãn: trong mỗi hình hộp chữ nhật với các mặt trên các hệ mặt đã cho và tập hợp độ dài ba cạnh xuất phát từ một đỉnh là $\left\{ 2m+1,2n+1,2p+1 \right\}$. Khối lập phương đơn vị có tâm trùng với tâm của hình hộp chữ nhật được điền số bằng trung bình cộng của các số điền ở tâm của 8 hình lập phương ở các góc của hình hộp đó. Hỏi có tất cả bao nhiêu cách điền Điện Biên?
Những cách điền là giống nhau nếu các số được điền vào các khối lập phương đơn vị có cùng tọa độ trong các cách này đều giống nhau.

Về VNMATH.COM

VNMATH hoạt động từ năm 2008 với slogan Trao đổi để học hỏi, Sẻ chia để vươn lên. Hiện nay VNMATH.COM là trang web Toán học có lượt truy cập lớn nhất Việt Nam.

Chia sẻ bài viết này


Bài viết liên quan

Không có nhận xét nào :

Để lại Nhận xét