Đề thi THPT Quốc gia môn Toán năm 2015, De thi thu THPT Quoc Gia nam 2015

You are here: Home »

Like VNMATH on FACEBOOK để ủng hộ VNMATH.

Đề thi Olympic Toán Sinh viên Đại học Bách khoa Hà Nội 2014

VNMATH.COM 15 tháng 2, 2014 , 0

Đề thi môn Giải tích

Câu 1. Cho $x>0$, tính giới hạn:

$$\lim_{n\to +\infty} n^2\left(\sqrt[n]{x}-\sqrt[n+1]{x}\right).$$

Câu 2. Cho hàm $f(x)=\sin x+\sin (\sqrt{2}x),\: x\in \mathbb{R}$. Chứng minh rằng không tồn tại số $T>0$ sao cho:

$$f(x)=f(x+T), \forall x\in \mathbb{R}$$.

Câu 3. Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$, giả sử tồn tại 2 số $x_1, \: x_2$ sao cho $f(x_1)f(x_2)<0$. Chứng minh rằng: Tồn tại ba số $a,\: b,\: c$ sao cho $a<b<c,\: a+c=2b$ đồng thời:

$$15f(a)+2f(b)+2014f( c)=0$$

Câu 4. Tìm tất cả các hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$ thỏa mãn $f(0)=0$ và

$$\left | f'(x) \right |\leq 2014\left | f(x) \right |, \: \forall x\in \mathbb{R}$$

Câu 5. Cho hàm số $f(x)$ có đạo hàm trên $(0,+\infty)$. Chứng minh rằng:

Nếu $\lim_{x\to +\infty} \left(f(x)+2013f'(x)\right)=2014$ thì $\lim_{x\to +\infty}f(x)=2014$

Câu 6. Cho hàm số $f(x)$ liên tục trên $[0,1]$, $f(x)\geq 0,\forall x\in [0,1]$. Chứng minh rằng:

$$\lim_{n\to +\infty}\left ( \int_{0}^{1}f^n(x)dx \right )^{\frac{1}{n}}=\underset{x\in [0,1]}{\max}f(x)$$




Đề thi môn Đại số


Câu 1. Cho 3 dãy số $\left ( x_n \right )_{n\geq 0}, \left ( y_n \right )_{n\geq 0}, \left ( z_n \right )_{n\geq 0}$ xác định như sau:

$x_0=a, y_0=b, z_0=c$ và $\left\{\begin{matrix}4x_{n+1}=2x_n+y_n+z_n\\4y_{n +1}=x_n+2y_n+z_n\\4z_{n+1}=x_n+y_n+2z_n \end{matrix}\right.,\: \forall n\geq 0$. Đặt $U_n=\begin{bmatrix} x_n\\y_n\\z_n\end{bmatrix},\: \forall n\geq 0$

a) Xác định ma trận $A$ sao cho $U_{n+1}=AU_{n}, \forall n\geq 0$. Chéo hóa ma trận $A$.
b) Chứng minh rằng: $\lim_{n\to \infty} x_n=\lim_{n\to \infty} y_n=\lim_{n\to \infty} z_n=\frac{1}{3}\left ( a+b+C \right )$.

Câu 2. Ma trận $A\in M\left ( n, \mathbb{R} \right )$ gọi là ma trận lũy linh nếu tồn tại số nguyên dương $k$ sao cho $A^k=0$. Cho $P, Q\in M\left ( n, \mathbb{R} \right )$ là các ma trận lũy linh.

a) Tìm các trị riêng của $P$. Từ đó suy ra đa thức đặc trưng của $P$.
b) Chứng minh rằng nếu $PQ=QP$ thì $PQ$ cũng là ma trận lũy linh.
c) Giả sử $PQ+P+Q=0$. Tính $\det\left(I+2P+3Q\right)$.

Câu 3. Cho $A$ là ma trận cấp $3\times 2$, $B$ là ma trận cấp $2\times 3$ sao cho $AB=\begin{bmatrix} 1&1&2\\2&1&3\\2&-1&1\end{bmatrix}$

a) Chứng minh rằng: $\left ( AB \right )^3=3\left ( AB \right )^2$.
b) Tìm $BA$

Câu 4. Cho ma trận $A=\left [ a_{ij} \right ]$ vuông cấp 2014, trong đó $a_{ij}=\left\{\begin{matrix}0,\: i=j\\b^{i-j},\: i\neq j \end{matrix}\right.,\: b\neq 0$. Chứng minh rằng: $A$ khả nghịch và tìm ma trận nghịch đảo của $A$.

Câu 5. Cho đa thức $f(x)=2014x^{2014}+a_{2013}x^{2013}+\cdots+a_1x+a_ 0$ có 2014 nghiệm thực $x_1,x_2,...,x_{2014}$ và $g(x)=2014x^{2013}+a_{2013}x^{2012}+\cdots+a_2x+a_ 1$. Chứng minh rằng:

$$\sum_{i=1}^{2014}\frac{g(x_i)}{f'(x_i)}=1$$

Về VNMATH.COM

VNMATH hoạt động từ năm 2008 với slogan Trao đổi để học hỏi, Sẻ chia để vươn lên. Hiện nay VNMATH.COM là trang web Toán học có lượt truy cập lớn nhất Việt Nam.

Chia sẻ bài viết này


Bài viết liên quan

Không có nhận xét nào :

Để lại Nhận xét