Đề thi THPT Quốc gia môn Toán năm 2015, De thi thu THPT Quoc Gia nam 2015

You are here: Home »

Like VNMATH on FACEBOOK để ủng hộ VNMATH.

Kĩ thuật tính tích phân nâng cao - Phần 9: Logarit của hàm lượng giác (tiếp)

VNMATH.COM 14 tháng 9, 2013 , 0

Tiếp theo Phần 1 , Phần 2, Phần 3 , Phần 4, Phần 5, Phần 6, Phần 7Phần 8.

Ta tiếp tục bàn đến các vấn đề về tích phân của hàm logarit của các hàm lượng giác đã nói trong phần 8.
Bài 6:

\(\displaystyle \int_0^{\theta}\log|\cos x + \sin x|\,dx\)

Giải:

\(\displaystyle \int_0^{\theta}\log|\cos x + \sin x|\,dx=\int_0^{\theta}\log\,\left|\sqrt{2}\left(\sin\frac{\pi}{4}\cos x + \cos\frac{\pi}{4}\sin x\right)\right|\,dx=\)

\(\displaystyle -\frac{\theta}{2}\log 2+\int_0^{\theta}\log\,\left|2\sin\left(x+\frac{\pi}{4}\right)\right|\,dx=\)

\(\displaystyle -\frac{\theta}{2}\log 2+\frac{1}{2}\int_{\pi/2}^{2\theta+\pi/2}\log\,\left|2\sin\frac{y}{2}\right|\,dy=\)

\(\displaystyle -\frac{\theta}{2}\log 2-\frac{1}{2}\text{Cl}_2\left(\frac{\pi}{2}+2\theta\right)+\frac{1}{2}\text{Cl}_2\left(\frac{\pi}{2}\right)=\)

\(\displaystyle -\frac{\theta}{2}\log 2-\frac{1}{2}\text{Cl}_2\left(\frac{\pi}{2}+2\theta\right)+\frac{G}{2}\)

Do đó

\(\displaystyle \int_0^{\theta}\log|\cos x + \sin x|\,dx=-\frac{\theta}{2}\log 2-\frac{1}{2}\text{Cl}_2\left(\frac{\pi}{2}+2\theta\right)+\frac{G}{2}.\,\Box\)

Bài 7:

\(\displaystyle \int_0^{\theta}x\,\log(\sin x)\,dx\)

Giải:

\(\displaystyle \int_0^{\theta}x\,\log(\sin x)\,dx=\int_0^{\theta}x\,\log(2\sin x)\,dx-\frac{\theta^2}{2}\log 2=\)

\(\displaystyle \frac{1}{4}\int_0^{2\theta}y\,\log\left(2\sin \frac{y}{2}\right)\,dy-\frac{\theta^2}{2}\log 2=\)

\(\displaystyle \frac{1}{4}\int_0^{2\theta}x\,\left[-\frac{d}{dx}\text{Cl}_2(x)\right]\,dx-\frac{\theta^2}{2}\log 2=\)

\(\displaystyle -\frac{1}{4}x\,\text{Cl}_2(x)\biggr|_0^{2\theta}+\frac{1}{4}\int_0^{2\theta}\text{Cl}_2(x)\,dx-\frac{\theta^2}{2}\log 2\)

\(\displaystyle -\frac{\theta}{2}\,\text{Cl}_2(2\theta)-\frac{\theta^2}{2}\log 2+\frac{1}{4}\int_0^{2\theta}\text{Cl}_2(x)\,dx=\)

\(\displaystyle -\frac{\theta}{2}\,\text{Cl}_2(2\theta)-\frac{\theta^2}{2}\log 2+\frac{1}{4}\sum_{k=1}^{\infty}\frac{1}{k^2}\int_0^{2\theta}\sin kx\,dx=\)

\(\displaystyle -\frac{\theta}{2}\,\text{Cl}_2(2\theta)-\frac{\theta^2}{2}\log 2-\frac{1}{4}\sum_{k=1}^{\infty}\frac{\cos kx}{k^3}\Biggr|_0^{2\theta}=\)

\(\displaystyle -\frac{\theta}{2}\,\text{Cl}_2(2\theta)-\frac{\theta^2}{2}\log 2-\frac{1}{4}\sum_{k=1}^{\infty}\frac{\cos 2k\theta}{k^3}+\frac{1}{4}\sum_{k=1}^{\infty}\frac{1}{k^3}=\)

\(\displaystyle -\frac{\theta}{2}\,\text{Cl}_2(2\theta)-\frac{\theta^2}{2}\log 2-\frac{1}{4}\text{Cl}_3(2\theta)+\frac{1}{4}\zeta(3)\)



\(\displaystyle \text{Cl}_{2m+1}(\varphi)=\sum_{k=1}^{\infty}\frac{\cos k\varphi}{k^{2m+1}}\)

Do đó

\(\displaystyle \int_0^{\theta}x\,\log(\sin x)\,dx=\frac{1}{4}\left[\zeta(3)-2\theta^2\log2-2\theta\text{Cl}_2(2\theta)-\text{Cl}_3(2\theta)\right].\,\Box\)

Bài 8:

\(\displaystyle \int_0^{\theta}x\log(\cos x)\,dx\)

Giải:

Đặt  \(\displaystyle x=\pi/2-y\,\) ta có

\(\displaystyle \int_0^{\theta}x\log(\cos x)\,dx=-\int_{\pi/2}^{\pi/2-\theta}\left(y-\frac{\pi}{2}\right)\log(\sin y)\,dy=\)

\(\displaystyle -\int_{\pi/2}^{\pi/2-\theta}x\,\log(\sin x)\,dx+\frac{\pi}{2}\int_{\pi/2}^{\pi/2-\theta}\log(\sin x)\,dx=\)


\(\displaystyle -\frac{1}{4}\Big[\zeta(3)-2\theta^2\log2-2\theta\text{Cl}_2(2\theta)-\text{Cl}_3(2\theta)\Big]_{\pi/2}^{\pi/2-\theta}
+\frac{\pi}{2}\Big[-\frac{1}{2}\text{Cl}_2(2\theta)-\theta\log 2\Big]_{\pi/2}^{\pi/2-\theta}\)


\(\displaystyle \frac{\theta^2}{2}\log 2-\frac{\theta}{2}\text{Cl}_2(\pi-2\theta)+\frac{1}{4}\text{Cl}_3(\pi-2\theta)-\frac{1}{4}\text{Cl}_3(\pi)\)



\(\displaystyle \text{Cl}_3(\pi)=\sum_{k=1}^{\infty}\frac{\cos \pi k}{k^3}=\sum_{k=1}^{\infty}\frac{(-1)^k}{k^3}=-\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k^3}=-\eta(3)=\)

\(\displaystyle -\left(1+\frac{1}{2^3}-\frac{1}{3^3}+\frac{1}{4^3}-\cdots\right)=-\zeta(3)\left(1-\frac{2}{2^3}\right)=-\frac{3}{4}\zeta(3)\)

Kết quả

\(\displaystyle \int_0^{\theta}x\log(\cos x)\,dx=\)


\(\displaystyle \frac{3}{16}\zeta(3)+\frac{\theta^2}{2}\log 2-\frac{\theta}{2}\text{Cl}_2(\pi-2\theta)+\frac{1}{4}\text{Cl}_3(\pi-2\theta).\,\Box\)

Bài 9:

\(\displaystyle \mathcal{I}(a\,;\, b)=\int_0^{\theta}\log(a\cos x +b\sin x)\,dx\)

Giải:

Để ý

(1) \(\displaystyle \,\,\,\,\,\,\,\,\,\,a\cos x+b\sin x=\sqrt{a^2+b^2}\cos(x\pm\varphi);\,\,\,\,\, \varphi=\tan^{-1}(\mp b/a)\)

(2) \(\displaystyle \,\,\,\,\,\,\,\,\,\,a\cos x+b\sin x=\sqrt{a^2+b^2}\sin(x\pm\varphi);\,\,\,\,\, \varphi=\tan^{-1}(\pm a/b)\)

Tích phân đã cho có thể viết lại

\(\displaystyle \mathcal{I}(a\,;\, b)=\int_0^{\theta}\log(a\cos x +b\sin x)\,dx\)

có thể viết dưới dạng

\(\displaystyle \frac{\theta}{2}\log(a^2+b^2)+\int_0^{\theta}\log\left[\sin(x-\varphi)\right]\,dx\)

trong đó

\(\displaystyle \varphi=\tan^{-1}(- a/b)=-\tan^{-1}(a/b)\)

Ta có
\(\displaystyle \int_0^{\theta}\log\left[\sin(x-\varphi)\right]\,dx=\int_0^{\theta}\log\left[2\sin(x-\varphi)\right]\,dx-\theta\log 2\)

Thay \(\displaystyle x-\varphi=y/2\,\Rightarrow\)

\(\displaystyle \frac{1}{2}\int_{-2\varphi}^{2\theta-2\varphi}\log\left(2\sin\frac{y}{2}\right)\,dy-\theta\log 2=\frac{1}{2}\left[\text{Cl}_2(-2\varphi)-\text{Cl}_2(2\theta-2\varphi)\right]-\theta\log 2\)

Mặt khác, hàm Clausen bậc 2 là hàm lẻ nên

\(\displaystyle \text{Cl}_2(-\phi)=\sum_{k=1}^{\infty}\frac{\sin (-k\phi)}{k^2}=-\sum_{k=1}^{\infty}\frac{\sin (k\phi)}{k^2}=-\text{Cl}_2(\phi)\)

Do đó

\(\displaystyle \int_0^{\theta}\log\left[\sin(x-\varphi)\right]\,dx=-\frac{1}{2}\left[\text{Cl}_2(2\varphi)+\text{Cl}_2(2\theta-2\varphi)\right]-\theta\log 2\)

Vậy

\(\displaystyle \int_0^{\theta}\log(a\cos x +b\sin x)\,dx=\)


\(\displaystyle \frac{\theta}{2}\log(a^2+b^2)-\frac{1}{2}\left[\text{Cl}_2(2\varphi)+\text{Cl}_2(2\theta-2\varphi)\right]-\theta\log 2.\,\Box\)

Bài 10:

\(\displaystyle I_0=\int_0^1\log\Gamma(x)\,dx\)

Giải:

Theo công thức Euler cho hàm Gamma ta có

\(\displaystyle \Gamma(x)\Gamma(1-x)=\frac{\pi}{\sin\pi x}\)


Lấy logarit hai vế, rồi lấy tích phan từ 0 tới 1 ta được

\(\displaystyle \int_0^1\log\Gamma(x)\,dx+\int_0^1\log\Gamma(1-x)\,dx=\log\pi-\int_0^1\log(\sin \pi x)\,dx\)

Thay \(\displaystyle x\to 1-y\,\) tích phân thứ hai


\(\displaystyle 2\int_0^1\log\Gamma(x)\,dx=2\,I_0=\log\pi-\int_0^1\log(\sin \pi x)\,dx\)

Mặt khác

\(\displaystyle \int_0^1\log(\sin \pi x)\,dx=\int_0^1\log(2\sin \pi x)\,dx-\log 2\int_0^1\,dx=\)


\(\displaystyle \int_0^1\log(2\sin \pi x)\,dx-\log 2\)
Tiếp theo, đặt \(\displaystyle \pi x=y/2\,\) tích phân trên trở thành


\(\displaystyle \int_0^1\log(2\sin \pi x)\,dx=\frac{1}{2\pi}\int_0^{2\pi}\log\left(2\sin\frac{y}{2}\right)\,dx=\)


\(\displaystyle -\frac{1}{2\pi}\text{Cl}_2(2\pi)=-\frac{1}{2\pi}\sum_{k=1}^{\infty}\frac{\sin 2\pi k}{k^2}=0\)

Do đó

\(\displaystyle 2\int_0^1\log\Gamma(x)\,dx=\log\pi +\log 2\)
Nói cách khác
\(\displaystyle \int_0^1\log\Gamma(x)\,dx=\log\sqrt{2\pi}.\,\Box\)
Bài tập luyện tập:
1. Tính $$\displaystyle \mathbb{T}(m\,;\, n)=\int_{0}^{\pi/4}\log^n(\tan x)\log^m[-\log(\tan x)]\,dx$$

2. Tính $$\displaystyle \mathbb{T}(m\,;\, n)=\int_0^1\frac{(\log x)^n\log^m(-\log x)}{1+x^2}\,dx$$

3. Tính $$\displaystyle S_m(\theta)=\int_0^{\theta}x^m\log(\sin x)\,dx$$

Còn nữa...

Về VNMATH.COM

VNMATH hoạt động từ năm 2008 với slogan Trao đổi để học hỏi, Sẻ chia để vươn lên. Hiện nay VNMATH.COM là trang web Toán học có lượt truy cập lớn nhất Việt Nam.

Chia sẻ bài viết này


Bài viết liên quan

Không có nhận xét nào :

Để lại Nhận xét