Đề thi THPT Quốc gia môn Toán năm 2015, De thi thu THPT Quoc Gia nam 2015

You are here: Home »

Like VNMATH on FACEBOOK để ủng hộ VNMATH.

Đề thi IMO 2013 và lời giải - IMO 2013 Problems and Solutions

VNMATH.COM 24 tháng 7, 2013 , 0



VNMATH giới thiệu đề thi và lời giải kì thi Olympic Toán Quốc tế năm 2013 (IMO 2013). Các thí sinh sẽ làm bài thi trong hai ngày 23-24 tháng 7 năm 2013.

1st DAY
Ngày thứ nhất
Bài 1. Chứng minh rằng với hai số nguyên dương $k,n$ bất kì, tồn tại các số nguyên dương $m_1,m_2,\ldots,m_k$ sao cho
$$ 1+\frac{2^k-1}{n}=\left(1+\frac{1}{m_1}\right) \left(1+\frac{1}{m_2}\right) \dots \left(1+\frac{1}{m_k}\right). $$

Bài 2. Cho 2013 điểm màu đỏ và 2014 điểm màu xanh trên mặt phẳng, không có ba điểm nào thẳng hàng. Ta chia mặt phẳng bởi các đường thẳng (không đi qua các điểm trên) thành các miền sao cho không có miền nào chứa các điểm có màu khác nhau. Số nhỏ nhất các đường thẳng luôn thỏa mãn là bao nhiêu?

Bài 3. Cho tam giác $ABC$ và $A_1,B_1,C_1$ lần lượt là các tiếp điểm của các đường tròn bàng tiếp trong các góc $A,B,C$ với các cạnh $BC,CA,AB$. Chứng minh rằng nếu tâm đường tròn ngoại tiếp của tam giác $A_1B_1C_1$ nằm trên đường tròn ngoại tiếp của tam giác $ABC$ thì tam giác $ABC$ vuông.

2nd DAY
Ngày thứ hai
Bài 4. Cho tam giác nhọn $ABC$ với trực tâm $H$. Cho $W$ là một điểm tùy ý trên cạnh $BC$, khác với các điểm $B$ và $C$. Các điểm $M$ và $N$ tương ứng là chân các đường cao hạ từ $B$ và $C$. Kí hiệu $\omega_1$ là đường tròn ngoại tiếp tam giác $BWN$, và gọi $X$ là điểm trên $\omega_1$ sao cho $WX$ là đường kính của $\omega_1$. Tương tự, kí hiệu $\omega_2$ là đường tròn ngoại tiếp tam giác $CWM$, và gọi $Y$ là điểm trên $\omega_2$ sao cho $WY$ là đường kính của $\omega_2$. Chứng minh rằng các điểm $X,Y$ và $H$ thẳng hàng.

Bài 5. Kí hiệu $\mathbb{Q}_{>0}$ là tập hợp các số hữu tỉ dương. Cho $f : \mathbb{Q}_{>0} \to \mathbb{R}$ là hàm số thỏa mãn ba điều kiện sau:
  1. với mọi $x,y \in \mathbb{Q}_{>0}$, ta có $f(x)f(y) \ge f(xy)$;
  2. với mọi $x,y \in \mathbb{Q}_{>0}$, ta có $f(x+y) \ge f(x)+f(y)$;
  3. tồn tại số hữu tỉ $a>1$ sao cho $f(a)=a$.
Chứng minh rằng $f(x)=x$ với mọi $x \in \mathbb{Q}_{>0}$.

Bài 6. Cho số nguyên $n \ge 3$. Xét một đường tròn và lấy $n+1$ điểm cách đều nhau trên đường tròn đó. Xét tất cả các cách ghi các số $0,1,\ldots,n$ lên các điểm đã lấy sao cho trong mỗi cách ghi, tại mỗi điểm được ghi một số và mỗi số được ghi đúng một lần. Hai cách ghi được gọi là như nhau nếu cách ghi này có thể nhận được từ cách ghi kia nhờ một phép quay quanh tâm đường tròn. Một cách ghi được gọi là đẹp nếu với bốn số tùy ý $a<b<c<d$ mà $a+d=b+c$, dây cung nối hai điểm được ghi $a$ và $d$ không cắt dây cung nối hai điểm được ghi $b$ và $c$.

Kí hiệu $M$ là số các cách ghi đẹp và kí hiệu $N$ là số các cặp có thứ tự $(x,y)$ các số tự nhiên thỏa mãn đồng thời các điều kiện $x+y \le n$ và $\gcd(x,y)=1$. Chứng minh rằng
$$ M=N+1. $$

Về VNMATH.COM

VNMATH hoạt động từ năm 2008 với slogan Trao đổi để học hỏi, Sẻ chia để vươn lên. Hiện nay VNMATH.COM là trang web Toán học có lượt truy cập lớn nhất Việt Nam.

Chia sẻ bài viết này


Bài viết liên quan

Không có nhận xét nào :

Để lại Nhận xét