Đề thi THPT Quốc gia môn Toán năm 2015, De thi thu THPT Quoc Gia nam 2015

You are here: Home »

Like VNMATH on FACEBOOK để ủng hộ VNMATH.

Dưới vi phân của hàm lồi và một số ứng dụng trong tối ưu

VnMaTh.CoM 14 tháng 10, 2011 0

Giải tích lồi là một bộ môn quan trọng trong giải tích phi tuyến hiện đại.
Giải tích lồi nghiên cứu những khía cạnh giải tích của tập lồi và hàm lồi.Dưới vi phân là một khái niệm cơ bản của giải tích lồi. Đây là mở rộng cho đạo hàm khi hàm không khả vi. Điều này cho thấy vai trò của dưới vi phân trong giải tích hiện đại cũng có tầm quan trọng như vai trò của đạo hàm trong giải tích cổ điển. Dưới vi phân của hàm lồi có rất nhiều ứng dụng trong giải tích phi tuyến và đặc biệt trong các bộ môn toán ứng dụng, như tối ưu hoá,bất đẳng thức biến phân, cân bằng v...v.
Mục đích của luận văn là trình bày một cách có hệ thống, các kiến thức cơ bản và quan trọng nhất về dưới vi phân của hàm lồi và xét một số ứng dụng điển hình của dưới vi phân trong tối ưu hoá.
Luận văn gồm 3 chương. Trong chương 1 sẽ trình bày những kiến thức cơ bản về tập lồi và hàm lồi. Đây là các kiến thức bổ trợ cho chương 2 và do đó sẽ không được chứng minh trong luận văn này. Trong chương 2 sẽ đề cập về đạo hàm theo phương, dưới vi phân, dưới vi phân xấp xỉ và một số tính chất cơ bản của chúng. Dựa trên các kết quả đã nghiên cứu trong các chương trước, trong chương 3 sẽ trình bày các điều kiện cực trị cho các bài toán quy hoạch lồi với các rằng buộc khác nhau (không rằng buộc, rằng buộc đẳng thức, rằng buộc bất đẳng thức).
Dưới vi phân của hàm lồi và một số ứng dụng trong tối ưu, luận văn Thạc sĩ của Nông THị Mai. Download 1. Download 2.

Về VNMATH.COM

VNMATH hoạt động từ năm 2008 với slogan Trao đổi để học hỏi, Sẻ chia để vươn lên. Hiện nay VNMATH.COM là trang web Toán học có lượt truy cập lớn nhất Việt Nam.

Chia sẻ bài viết này


Bài viết liên quan

Không có nhận xét nào :

Để lại Nhận xét