Đề thi THPT Quốc gia môn Toán năm 2015, De thi thu THPT Quoc Gia nam 2015

You are here: Home »

Like VNMATH on FACEBOOK để ủng hộ VNMATH.

Định lí DUBOVITSTKII-MILYUTIN và điều kiện tối ưu

VnMaTh.CoM 17 tháng 9, 2011 0

Lý thuyết các điều kiện tối ưu đóng một vai trò quan trọng trong lý
thuyết tối ưu hóa. Năm 1965, A. Ya. Dubovitskii và A. A. Milyutin [1] đã đưa
ra lý thuyết các điều kiện cần tối ưu dưới ngôn ngữ giải tích hàm và cho ta
phương pháp giải tích hàm hiệu quả để nghiên cứu các bài toán tối ưu và điều
khiển. Công trình nổi tiếng của Dubovitskii-Milyutin [1] đánh dấu một bước
phát triển quan trọng của lý thuyết tối ưu hóa.
I. Lasiecka [4] đã tổng quát hóa các kết quả của Dubovitskii-Milyutin
trên cơ sở chứng minh một mở rộng của định lý tách. Chú ý rằng các điều
kiện tối ưu của định lý Dubovitskii-Milyutin dựa trên việc tách một nón chấp
nhận được và một nón tiếp tuyến, trong đó nón chấp nhận được là xấp xỉ nón
của tập ràng buộc bất đẳng thức và tập mức của hàm mục tiêu. Còn kết quả
của Lasiecka [4] lại dựa trên tách một nón trong và một nón ngoài.
Sử dụng định lý Dubovitskii-Milyutin, Đ. V. Lưu và N. M. Hùng [5] đã
thiết lập một định lý luân hồi kiểu Tucker cho hệ bao gồm các bất đẳng thức,
đẳng thức và một bao hàm thức. Từ đó Lưu-Hùng [5] đã chứng minh các điều
kiện cần Kuhn-Tucker với các nhân tử Lagrange dương ứng với các thành
phần của hàm mục tiêu cho nghiệm hữu hiệu của bài toán tối ưu đa mục tiêu
với các ràng buộc bất đẳng thức, đẳng thức và ràng buộc tập trong không gian
định chuẩn.
Luận văn trình bày các định lý Dubovitskii-Milyutin, các mở rộng của
chúng và ứng dụng để dẫn các điều kiện cần Kuhn-Tucker cho nghiệm hữu
hiệu của bài toán tối ưu đa mục tiêu với các ràng buộc bất đẳng thức, đẳng
thức và ràng buộc tập trong không gian định chuẩn.
Luận văn bao gồm phần mở đầu, ba chương, kết luận và danh mục các
tài liệu tham khảo.
Chương 1 trình bày các định lý của Dubovitskii-Milyutin về điều kiện tối
ưu tổng quát và một số kết quả có liên quan.
Chương 2 trình bày các kết quả của Lasiecka [4] về các tổng quát hóa
các điều kiện tối ưu của Dubovitskii-Milyutin trên cơ sở chứng minh một
định lý tách cho một nón trong và một nón ngoài không tương giao.
Chương 3 trình bày một ứng dụng của định lý Dubovitskii-Milyutin để
thiết lập một định lý luân hồi kiểu Tucker cho hệ các bất đẳng thức, đẳng
thức, bao hàm thức và dẫn các điều kiện cần cho nghiệm hữu hiệu của bài
toán tối ưu đa mục tiêu với các ràng buộc bất đẳng thức, đẳng thức và ràng
buộc tập. Chú ý rằng các nhân tử Lagrange ứng với tất cả các thành phần hàm
mục tiêu ở đây là dương.
Định lí DUBOVITSTKII-MILYUTIN và điều kiện tối ưu của Ngô Thị Thu Thủy. Download1. Download 2.

Về VNMATH.COM

VNMATH hoạt động từ năm 2008 với slogan Trao đổi để học hỏi, Sẻ chia để vươn lên. Hiện nay VNMATH.COM là trang web Toán học có lượt truy cập lớn nhất Việt Nam.

Chia sẻ bài viết này


Bài viết liên quan

Không có nhận xét nào :

Để lại Nhận xét